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STUDY OF THE INJECTION UPSETTING OF METALS 

B. Parsons* P. R. Milnert B. N. Cole$ 

The punch pressure required to injection upset a cylindrical billet of an isotropic, non-work-hardening, 
rigid-plastic material is derived using an upper bound (velocity field) technique and by a ‘slab’ stress analysis. 
A method for applying the theory to the injection upsetting of work-hardening materials is evolved and the 
validity of this application is demonstrated by the results of experiments using pure 

aluminium alloy and copper. 

1 INTRODUCTION 
INJECTION UPSETTING is essentially the production of a 
localized increase in the diameter of part of a cylindrical 
billet of plastically deformable material by forcing the 
material to flow into an annular space of fixed clearance 
(see Fig. 1). Experimental studies of this process by the 
N.E.L. (National Engineering Laboratory) (I) (2)s have 
shown that for various steels a larger volume of flange can 
be produced by this method than by the more conven- 
tional processes of heading or flange forging. In the latter 
process, the volume of the resulting flange is restricted by 
buckling of the initially unrestrained portion of the billet, 
which tends to occur when this exceeds 2.5 times the 
billet diameter. 

Other work on injection upsetting has been concerned 
with the cold forming of flanges on billets of materials 
having limited ductility by performing the operation 
against a constraining hydrostatic pressure (3)-(6). It has 
been shown that a hydrostatic constraining pressure 
applied to the flange rim increases the limiting diameter of 
the flange that can be formed on billets of both ductile 
and brittle metals. 

Although complete theoretical solutions are known for 
certain problems of the flow of a rigid-plastic body (7) (8), 
such solutions are generally difficult to obtain and, in 
recent published work, much use has been made of partial 
solutions satisfying the upper bound theorem given by 
Hill (9). Such solutions involve the derivation of a kine- 
matically admissible velocity field and may often be 
obtained easily by the methods of Johnson (10) or Kudo 
(11) (12). Many examples of analysis of metal forming 
processes may be found, e.g. in (13) (14). The correspon- 
ding lower bound theorem consists of deriving a statically 
admissible stress field for the deforming body. The condi- 
tions of the theorem are relatively difficult to satisfy and 
some simplification of the equilibrium equations is usually 
necessary to obtain an analysis of the stresses in the de- 
forming body. Most stress analyses therefore yield an 
approximate value for the work rate and tool pressures, 
rather than a lower bound. Avitzur (13) (IS) has produced 
lower bounds for forging between rough, parallel platens. 
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a On the end of a billet. 
b Part way along the billet. 

Fig. 1. The injection upsetting process 

Existing lower bounds for more complex forming pro- 
cesses are derived from ‘ideal’ deformation, disregarding 
friction and internal shearing effects. These usually under- 
estimate the actual tool forces by a considerable margin. 

Useful theoretical analyses of injection upsetting are 
still largely lacking. Cogan and Dorman (5) presented 
several analyses, none of which predicts the observed 
variation in punch pressures required for upsetting flanges 
of different thicknesses on a given diameter billet. The 
upper bound analysis of Alexander and Lengyel (6) does 
predict these pressure variations, but the present work 
indicates that their solution greatly overestimates the 
punch pressure, particularly for the production of thin 
flanges. The method for allowing for work-hardening as 
introduced by Alexander et al. is, in the present work, used 
in a modified form so as to take into account the non- 
steady nature of the upsetting process. 

1.1 Notation 
a 
b Nominal flange thickness. 

Billet radius. 
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w 
A 

P 
UO 

Strain rates (axial symmetry). 
Friction factor (0 < m < 1). 
Mean punch pressure. 
Partial punch pressure, i.e. separate con- 

tributions of various effects to the 
total mean punch pressure. 

Radial pressure applied to rim of flange. 
Cylindrical co-ordinates. 
= ro/a. 
= r/a.  
Flange outer radius. 
Punch velocity. 
Flow velocities. 
Slip velocity along a surface of flow dis- 

continuity. 
Rate of working of punch or, with suf- 

fixes, separate contributions to L#'. 
Geometrical parameter defining the 

axial extent of the deformation zone 
within the billet. 

= b/a. 
Yield or flow stress of the deforming 

Direct stresses (axial symmetry). 
Shear stresses (axial symmetry). 

material. 

Other symbols, which are not used extensively in the 
analysis, will be defined as required. 

2 THE BASIC EQUATIONS OF STRESS AND 
FLOW FOR AXISYMMETRIC DEFORMING 

Strain rates: 
au, . auz . 

trr = era = - aZ 

I,, = L,, = - 
Radial static equilibrium: 

aur aTrz - + - + y = o  ar az . . . (3) 

Axial static equilibrium: 

Yield (won Mises): 

Rate of working due to deformation within volume V: 
00' = +{(ur-ue)2 + (00 -0z)' + (~z-ur)'  + 6~rz") (5) 

where i ,  j = r, z, 8. 
Rate of working due to  slip on a surface of $ow discontinuity 
(area A) within the deforming body: 

Equations (6) and (7) apply strictly to an isotropic, non- 
work-hardening rigid-plastic material obeying the von 
Mises yield criterion (i.e. a Ltvy-Mises material). How- 
ever, a mean value of uo for a work-hardening material 
may be derived from an upper bound solution for an ideal 
plastic material and the upper bound analysis may then be 
applied to the work-hardening case. 

BODIES 
The following equations are presented in a form relevant 
to the subsequent analysis; typical derivations may be 
found in (13) (14). 

3 A MINIMIZED UPPER BOUND ON POWER 
FOR INJECTION UPSETTING 

In the following analysis, an upper bound solution is 
developed in which w is minimized with respect to the 

Continuity of pow:  position of the surface of velocity discontinuity that 
divides the deforming part of the billet from the unde- 
formed part (regions 1 and 2 in Fig. 2a). This discon- 
tinuity surface is assumed to be conical and, given this 

-- au, 1 a 
bz t a r  - ---(ru,) . . . . (1) 

Z 

a Upsetting end of billet. b Velocities at 1-2 discontinuity surface. c Upsetting part way along billet. 

Fig. 2. Partitioning of deforming material for theoretical analysis 
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variational restriction on the extent of the plastic region, 
it is not possible therefore to achieve a complete solution. 
The values of k$' derived in th is  manner are therefore 
overestimates of the correct value by an unknown margin. 

The deforming body is resolved into three distinct 
regions, as shown in Fig. 2a. In  region 1, the material is 
rigid and is moving axially at the punch velocity U. Region 
3 is a zone of purely radial flow (in practice, axial contrac- 
tion of the flange occurs unless a sufficiently large radial 
pressure is applied to the flange rim, but disregard of this 
effect has been shown (16) to cause an error in the value of 
the mean punch pressure which is not greater than, and is 
probably much less than, +0.19u0). The radial velocity in 
region 3 is assumed to be independent of z and so con- 
tinuity from region 1 to a cylindrical surface of radius r 
in region 3 requires that, at that surface 

In region 2, equation (1) must be satisfied throughout. In  
addition, the velocity field must satisfy continuity require- 
ments at the boundaries dividing this region from regions 
1 and 3. These conditions alone are insufficient to define 
u, and u, uniquely throughout region 2; it may be noted, 
however, that u, is independent of z in region 3 and if this 
condition is extended to region 2, the solution of equation 
(1) is greatly simplified and is unique. The velocity field for 
this region is derived in Appendix 1, where it is shown 
that 

I(, = 1 Uaz 2Aa+r(l-A) 
26 [Aa+r(l-A>l2 

. . . (9) 
[ t(, = -- Uar 

26[Aa+r( 1 -A)]' 

The strain rates for region 2 are found from equation (2) 
and are given by 

UAa2 
26[Aa+ r( 1 - A)I2 irr = "' = 2b[Aa+ r( 1 -A)] 

1 t,, = -- 
Uaz{ 1 - A}{3Au+r( 1 -A)} 

46[Aa +r( 1 - A)I3 e,, = e,, = 

and for region 3, 

ua2 ua2 . 
fj,, = -- 2b2 i88 = - e,, = i,, = k,, = 0 (11) 26r2 

In the calculations of id', account must be taken of the 
shear work performed at the 1-2 and 2-3 boundaries, 
where velocity discontinuities tangential to these boun- 
daries exist. On the 2-3 boundary, the slip velocity (vZ3) 
is simply the difference between the values of u,, at r = a, 
for the two regions, thus 

Using the notation of Fig. 26, the slip velocity on the 1-2 
boundary is given by 

1v121 = U sin ++u, cos ++u, sin 4 . (13) 
It may be verified that 

Ur 4[a2+b2( 1 - . . (14) 26[Aa+r( 1 - A)] 1v121 = 

wand hence the mean punch pressure can now be derived 
using equations (6) and (7). For region 3, the rate of 
working due to internal deformation (WI3) is given by 

2ma2Uu0 ro 
=- In- (15) 

4 3  a 
For region 2, the internal power of deformation (p,,) 
may be derived very simply when A = 1, but for the general 
case numerical integration of equation (6) is necessary. It 
may be verified that 

On substitution of equation (16) into equation (a), the 
integration with respect to z can be executed simply. The 
integration with respect to r was erformed numerically 
and the resulting values of gI2 are tabulated in 
Appendix 2. 

The power due to shear at the 1-2 boundary (id's,2) is 
given by equations (7) and (14) : 

rd[a2+b2(  1 - A)l]  d[aa +b2( 1 - A)2] 
26[Aa+~( 1 - A)] (1 

x2nr dr 
and hence 

7r42uo u [ 1 + p2( 1 - A)2] 

P(1- 4 d3 WSl, = 

. .  * (17) 
Equation (17) may be rewritten in the series form: 

7ru2uo u [ 1 + $( 1 - 4 2 1  
P d 3  

Ws12 = 

which is valid for all A > 0.5. This facilitates the computa- 
tion of WSl2 when A is close to unity. 

The rate of working due to shear at the 2-3 boundary 
( Ws23) is, from equations (7) and (12): 

(19) 
UU, (A+l)z 7ra2uoU(A+ 1) 
d3 .oo 26 2 4 3  

p s 2 3  = - [ - 27ra.d.z = 

The total rate of working is the sum of the component 
parts above, thus 

and the mean punch pressure is given by 
*= i d ' s l 2 + w ! 2 + * ~ 2 3 + w 1 3  * * (20) 

P * 4  +- 
uo 7ru2uoU uo 
-=- 

where q is the restraining pressure applied at the flahge 
rim. 

(The individual contributions to p are denoted by 

3 etc. P I 2  - PI2 , --- Ps12 id's12 

uo 7ra2uoU uo 7ra2u0U 
-- 

and are referred to as partial punch pressures.) 

expressed as 
Thus, the non-dimensional punch pressure p/uo can be 

- P = F ( p ,  A)+-ln 2 Ro+- 4 . . 
0 0  4 3  0 0  
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4 1  

0.2 

f . 4  
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0.7 

2 -  

1 L  I 1 I 1 I I I I 1 1 
0 0.2 0 .4  0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

A 

Fig. 3. Variation of the A-dependent component of punch pressure for various values of p 

PI2 P J l Z  1 0  where F(p, A) = -+-+'k and Ro = - 
0 0  0 0  0 0  a 

The function F(p, A) is shown in Fig. 3. The minima of 
the curves represent the optimum upper bound for a 
given value of p ;  the value of A for which this occurs is 
denoted by A,,,. A table of F(p, A,,,) and its components 
is given in Table 1, and the variation of punch pressure 
with Ro is shown for the case q = 0 in Fig. 4. 

The upper bound solution derived by Alexander and 
Lengyel (6) is 

- P 1  = -+- 4 P 2  4 +-+-In Ro+- (22) 
0 0  4 3  3 P d 3  d 3  4 3  0 0  

The solutions (21) and (22) are compared in Fig. 5. Also 
shown is a simple upper bound obtained by using the 
foregoing analysis with A = 1 .  This leads to the equation: 

P 1 P 2  4 -= l+-+-+-lnRo- . (23) 
0 0  3 4 3  4 3  d 3  0 0  

The curve given by equation (23) touches the optimized 
upper bound at p 2 0.13 and, by comparison of equations 
(22) and (23), it may be shown that when Ro = 1 ,  equation 

Table 1 .  Function F(p ,  A,,,) forjange at end of billet 

0.06 
0.08 
0.10 
0.14 
0.18 
0.20 
0.30 
0.40 
0.50 
0.60 
0.80 
1 .oo 
1.20 
1 40 
1.60 

3.70 
2.33 
1.59 
0.89 
0.55 
0.45 
0.21 
0.12 
0.08 
0.06 
0.06 
0.07 
0.07 
0.08 
0.11 

1.637 
1.357 
1.182 
0.966 
0.836 
0.795 
0.689 
0.647 
0.629 
0.621 
0.629 
0645 
0.657 
0.676 
0.711 

2.143 
1.896 
1.695 
1.411 
1.227 
1.149 
0.886 
0.743 
0.656 
0.604 
0.538 
0.509 
0.512 
0.515 
0.504 

0.082 
0.077 
0.075 
0.077 
0.080 
0.084 
0.105 
0.129 
0.156 
0.184 
0.245 
0.309 
0.370 
0.437 
0.512 

3.862 
3.330 
2-952 
2.454 
2.143 
2-028 
1.680 
1.519 
1.441 
1 409 
1,412 
1.463 
1.539 
1.628 
1.727 

,p=01 

3 8 -  

- 

0 14 

02 

1 6  
03 

1 3  
10 
05 
0 7  

10 1'2 Ib 1k 1 b  2'0 2'2 2'4 
RO 

Fig. 4. Variation of punch pressure with flange radius 
for differing values of p 

~ 
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3.80 
155 
0.72 
0.27 
0.26 
0.24 
0.21 
0.18 
0.18 
0.18 
0.19 
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1.667 
1.169 
0,901 
0.720 
0.718 
0.712 
0.707 
0.704 
0.717 
0.732 
0.754 

4- 

3- 

b" - - 
Q 

2- 

- 

0.139 
0.132 
0.148 
0.147 
0.182 

1 1  1 I I I I I 1 

0 0.2 , 0.4 0.6 0.8 I 10 1.2 1.4 1.6 
P 

u Simple upper bound ( A  = 1). 
6 Alexander and Lengyel (6). 
c Upper bound optimized with respect to A. 

Fig. 5.  Comparison of upper bound solutions (q = 0)  

1.240 
0.947 
0.692 
0.613 
0.491 

(21) must lead to values of p/uo which are somewhat 
less than a quarter of those given by equation (23) for 
values of p approaching zero. 

Frictional effects between workpiece and tooling can be 
accounted for theoretically if the surface shear stress is 
assumed to be a constant factor m (where 0 < m < 1) of 
the material shear strength. The power dissipated and the 
partial punch pressures due to frictional effects may then 
be calculated by using equation (7) and replacing uo by 
mu,. Since the calculations are essentially similar to the 
foregoing, only the results are given. The partial punch 
pressures due to frictional effects are: between billet and 
container in region 1, where I is the billet length in the 
container 

and at the platen surface in region 2, 
1 A  

In region 3, the frictional work will depend on whether 
or not a restraining radial pressure q is applied to the flange 
rim. As a result of axial thinning, if q = 0, then contact 
between the flange and the tooling will only occur at the 
lower platen. If, for a first approximation, it is assumed 
that the radial extent of this contact is given by Y ' ~  = a+ b, 
then the partial punch pressure due to this effect will be 

If a radial pressure q is applied and is sufficient to pre- 
vent axial thinning, then 

(Ro-1) . . . (27) P A -  2m 
(To P d 3  
-- 

Putting m = 1 into equation (25) produces the addi- 

tional term necessary in F(p, A) to produce an upper bound 
for injection of a flange part way along the billet (Fig. a). 
For this case the velocity field is unchanged, but there is 
now a dead zone 4 and a slip plane between region 2 and 4. 
Table 2 gives F(p, A,,,) for t h i s  case and the variation of 
this function for m = 0 and m = 1 is shown in Fig. 6. 
The introduction of the ps2 term into equation (21) 
increases the value of A,,, and ps2 is therefore not exactly 
linearly dependent on m. However, the error produced by 
linear interpolation between the m = 0 and m = 1 curves 
is negligible. 

Application of the above theory to a work-hardening 
material requires the replacement of the constant flow 
stress u0 of the ideal plastic material by a mean flow stress 
appropriate to the particular material in question. This is 
achieved using the upper bound solution for the ideal 
plastic as follows. When the punch moves downwards for 
a time at, it moves a distance U 6t and each elemental disc 
of undeformed billet that has previously entered regions 
2 and 3 is distorted as it progresses in these regions 
through a small distance that could be derived from the 

Table 2. Function F(p, A,,,) forflange part way along billet 

P 

0.10 
0.18 
0.30 
0.40 
0.50 
0.60 
0.80 
1 .oo 
1.20 
1 40 
1.60 

~~ 

I I I 

1.337 
0.958 
0.698 
0.664 
0.559 
0.499 
0 4 0  
0.428 
0.419 
0.423 
0.426 

O G S  I 0 4 3  
0.279 0.315 
0.341 I 0.256 
0.409 I 0.213 
0.477 0.183 
0.549 ~ 0.160 

4.383 
3.206 
2.439 
2.134 
1.950 
1.839 
1.741 
1.729 
1.758 
14315 
1.889 
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I 1 0 d2  014 016 018 110 I ‘2 1.4 1.6 
P 

Fig. 6. Optimized upper bound solutions assuming friction of platen surface (4 = 0)  

velocity equations. Since the velocity field is time- 
independent, the incremental work done by the punch is 
equal to that required to propel one such elemental disc 
from region 1 into regions 2 and 3 until it reached the 
instantaneous extremity of region 3. If the mean effective 
strain imparted on the disc during such a movement is 
Pm, then the work donelunit volume of material is aom~,,,,, 

where uOm is the mean effective flow stress. Thus, the work 
done (6 W) by the punch in time 6t is 

6W = raaU 6t.aome;, 

or 

that is 

& . . . . .  * (28) 
P -= 

“Om 

The above equation should exclude external frictional 
work done, as this work is not dissipated within the 
material as bulk plastic straining. Thus, equation (28) 
indicates that in the frictionless upper bound solution, if 
uo is replaced by uOm, the mean effective strain (Pm) asso- 
ciated with the process becomes equal to the right-hand side 
of the punch pressure equation (21). This can be calcu- 
lated and from a true stress-true strain curve for the 
material concerned, uOm may be found using the relation- 
ship : 

“Om = r a0 dP. . . * (29) 
em loZm 

and so p may be estimated. It is evident that for a con- 
tinuously work-hardening material, Pm and uOm will be 
overestimated by an amount that is dependent on the 
accuracy of the upper bound solution used. In using the 
upper bound solution to find p ,  having estimated uOm, the 
total error is increased further and so to be able to apply 
the theory with confidence to the forming of rapidly 
work-hardening materials, it is desirable to obtain as 
accurate an upper bound as possible. 

The above derivation of Pm contains the assumption that 
all the material in regions 2 and 3 originated in region 1 

and the results were used as such by Alexander and 
Lengyel. Since region 2 is initially filled with undeformed 
material, which will not undergo the deformations 
associated with crossing the 1-2 boundary, and to some 
extent those associated with movement through region 2, 
it is perhaps more correct to assume that the actual em 
in some factor +(Ro) of the value derived above, where 4 
is a monotone increasing function of R, which takes the 
value zero when Ro = 1 and unity as Ro tends to infinity. 
A suitable function satisfying these requirements is 

and using this 

where p/uom is given by the right-hand side of equation 
(21) using appropriate values of F(p, A,,,) from either 
Table 1 or Table 2. 

4 AN ELEMENTARY STRESS ANALYSIS 
The deforming billet is partitioned as in Fig. 2a with 
h = 1 and with surface frictional stresses ( m u 0 / d 3 )  at all 
points of contact with the tooling. The flow discontinuity 
surface between regions 1 and 2 indicated by the velocity 
field is assumed to result in a restraint on the radial move- 
ment of material in region 2; a radial internal friction stress 
of value (uo/.\/3) acts on the upper surface of this region. 
The method of analysis chosen cannot accommodate the 
similar restraint resulting from the discontinuity of axial 
velocity at the 2-3 boundary. The stress analysis is sim- 
plified by disregarding the effects of the shear tractions on 
the internal equilibrium of the deforming body. These 
shear tractions are taken to appear as axially uniform 
radial body forces in regions 2 and 3, and radially uniform 
axial body forces in region 1. Additionally, in regions 2 
and 3, u, and or are assumed to be axially uniform and 
therefore the term in T~~ disappears from equation ( 3 )  
and equation (4) becomes redundant. 

Journal Mechanical Engineering Science Vol15 No 6 1973 
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With the above assumptions it is found that the Levy- 
Mises equations are satisfied piecewise within regions 2 
and 3 and the associated velocity fields for these regions 
are given by putting h = 1 into the relevant expression of 
Table 1. Because the LCvy-Mises relationships are not 
continuously satisfied throughout regions 2 and 3 and also 
because of the simplifications in the equilibrium con- 
ditions, the following solution is not a lower bound. 

The simplified radial equilibrium equation for region 3 
is 

do, o,-oe 2m00 
- + r - - = o .  dr . * (31) 

Axial thinning is disregarded and the plane strain yield 
criterion : 

applies. Combining equations (31) and (32), integrating 
and inserting the boundary conditions or = -q on r = ro 
gives : 

oe+ur 
2 0, = - In plane strain, 

Therefore, 

oe = -3 4 3  [In%+lf(R,-R)-l P 1 -q (34) 

and 

o, = -- 200 [Inz+--(R,--R)--f] Ro m -q  (35) 
4 3  

The yield criterion for region 2 may be obtained by an 
appeal to the LCvy-Mises equations, the general yield 

. P 

equation (5) and the strain rate equations (10) with h = 1. 
Equations (10) reduce to 

u .  
e;,? = -- b e,, = d,, = 0 (36) 

u .  
d,, = doe = 5 

The Levy-Mises relationships then require that equation 
(5) reduce to 

0, = or = ao+a, . . . (37) 

Radial equilibrium in region 2 requires that 

The arbitrary constant is found by equating or in equations 
(33) and (38) at r = a, thus, from equations (38) and (37): 

or = lJe = -- W R O -  l)+(l+m)(l -R) 
P P 

-!I (39) 
and 

+d3] 
2m(R0- 1) (1 +m)( 1 - R) 

P P 
(I, = -- + 

-q (40) 
The axial stress in region 2 will be transmitted into region 
1 and, unless the length ( I )  of t h i s  region is small, this 
component of u, will be more or less uniform at the punch 
face, according to St Venant’s principle. It may thus be 
verified that the mean punch pressure is given by 

. .  * (41) 
and for the special case of m = 0 

4 1 2  
- = I + -  P +-lnR,+-. . (42) 
0 0  3Pd3 d 3  0 0  

1 ’  I I 1 
0 Ol.2 014 0 !6 018 I 10 1.2 1 4 1.6 

P 
u ‘Slab solution’ equation (42). 
b Optimized upper bound. 

Fig. 7. Comparison of ‘slab solution’ and optimized upper bound (q = 0) 
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Equation (42) is similar to equation (22) except that it 
does not contain the p / 4 3  term. This is because the re- 
straining effect of the flange region on axial movement in 
region 2 has not been accommodated in the simplified 
equilibrium equations. The punch pressure given by 
equation (42) is compared with the optimized upper 
bound in Fig. 7. 

If the term in p is omitted from equation (42), a lower 
bound on p is obtained, since without the inclusion of 
shear on the 1-2 boundary, the LCvy-Mises yield and 
internal equilibrium equations are satisfied within each of 
regions 2 and 3 and, because no redundant shearing work 
occurs in these regions, the deformation is ideal 

5 EXPERIMENTAL VERIFICATION 
OF THE THEORY 

Two sub-presses of the type shown in Fig. 8a were em- 
ployed. The illustrated sub-press has a duplex container 
of 32 mm bore diameter. This is separated from the base- 
plate by a pair of rectangular bars, a range of which was 
used to provide different gap heights. The platen is 
mounted on a piezo-electric load cell of 250 kN capacity, 
which is used to determine the force transmitted to the 
platen. With the load cell coupled to a charge amplifier, 
tests lasting 2-3 min could be performed without measur- 
able zero drift due to charge leakage. The second sub- 
press (not illustrated) is of essentially similar design except 
that it has a container of 20 mm bore diameter and a range 
of interchangeable platens for upsetting flanges part way 
along the billet. No provision for a load cell is incorpor- 
ated in this sub-press. 

The testing was carried out using a 500kN Denison 
hydraulic press, using billets of the following materials: 
Elc  aluminium, in both the annealed and as-received 
states, copper and an aluminium alloy of unknown 
composition that was supplied as Elc. This last material 
proved particularly favourable for etching, to show the 
flow pattern in deformed specimens. The lubricant used 
for all the tests was Droyt WS drawing compound. 

For the verification of the theory, quasi-static load- 
punch travel characteristics were obtained by allowing the 

deforming billet to attain static equilibrium under each of 
an increasing series of loads before taking readings. This 
eliminated the effects of strain rate in the materials and 
also minimized frictional effects. Measurements of the 
platen force failed to show any difference between that and 
the punch force during tests on aluminium billets with 
contact lengths of up to 50 mm in the container bore and 
punch loads up to 200 kN. The minimum deviation mea- 
surable with the load cell connected via a charge amplifier 
to an oscilloscope would have been 4kN, which indi- 
cates a maximum value for m of 0.05 in equation (24) if 
30 MN/m2 is taken as the initial yield stress of aluminium. 
As the punch load exceeded 100kN after very little 
deformation, it was considered that disregarding fric- 
tional effects was justifiable for the purpose of comparing 
the basic theory with experiment. 

Measurement on several products in various stages of 
deformation showed that the final diameter of the flange 
could be predicted with less than 3 per cent error from the 
punch travel values by assuming that the flange profile 
approximates to the parabolic form shown in Fig. 8b. 
ho is taken to be the value expected for an isotropic 
homogeneous solid, namely b l / (  l/Ro). It was therefore 
possible to relate punch pressure directly with Ro with 
reasonable accuracy to compare theory and experiment. 
Comparisons of the experimental results with the optim- 
ized upper bound theory are shown in Figs 9-11. uorn 
values for the individual tests were derived from true 
stress-strain curves derived from compression tests on a 
sample of test material. The value of k in the strain func- 
tion (equation (30)) was chosen arbitrarily as 0586, which 
is such that when Ro = 2, 4 = 0.5. As is seen from the 
resulting position of the experimental points relative to 
the upper bound curves, the experimental points follow 
the trend of the upper bound quite closely, except at the 
highest values of p. It is also evident that k is (fortuitously, 
perhaps) very near to the optimum value since the upper 
bound curves are close to the upward limit of scatter of 
the experimental points. The lower bound solution (equa- 
tion (42) without the term in p) would in every case 
underestimate p/oo, but this solution is less accurate than 
the graphs suggest, because use of this solution to calculate 

b 

- 
A 
6 

a Diagram of sub-press for injection upsetting experiments. 
b Parabolic approximation to flange profile. 

Fig. 8 
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x E l c  Aluminium (32mm dia.), annealed 
E l c  Aluminium (20mm dia.1, as received 
Aluminium alloy 

0 Copper 

1 1  I 1 I I I I 1 0 0.2 0.4 0.6 0.8 110 1.2 1.4 1.6 
P 

Fig. 9. Comparison of upper bounds and experimental results for the injection of a 
flange on the end of a billet (Ro = 1-31 

1 '  I I I I I 1 0 0.2  0.4 016 0.8 1.0 112 1.4 1.6 
P 

Fig. 10. Comparison of results for Ro = 1.6 

C,,, and uo would have the effect of elevating all the 
experimental points on the graphs. 

The same value of k was used to evaluate the theory for 
injection of flanges part way along the billet (Figs 12 and 
13), although the agreement with the upper bound curve 
is not as good in this case at low values of p. This, and the 
fact that the experimental points do not follow b e  upward 
trend of the upper bound curve at large values of p 
suggests that + may be to some extent dependent on p. 
There is, however, an alternative explanation for the 
behaviour at large values of p. The degree of constraint 
on region 2 is reduced as p increases beyond the point at 
which p/uo is theoretically a minimum. It therefore 

follows that unless further constraint is applied to region 2 
by a bulk of material in region 3 or by an external radial 
pressure, p/uo cannot increase as p increases. This being 
so, it would be expected that an upward trend of p/uo 
with p might begin to exhibit itself at flange diameters 
larger than those produced here, provided necking of the 
flange rim does not occur. 

In the upper bound analysis, it was found that the axial 
extent of the deformation zone (region 2) near the axis is 
greater than the nominal flange thickness for thin flanges 
and becomes less than the nominal flange thickness as p 
is increased. This is shown clearly in the etched alumin- 
ium alloy specimens of Fig. 14, which also shows that 
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Fig. 11. Comparison of results for Ro = 1.9 

8 Aluminium alloy 

o Copper 

I a .  
'b 

I I 
0 d 2  0'4 0'6 0'8 1'0 1'2 1'4 1.6 

P 

Fig. 12. Comparison of upper bound and experimental results 
for the injection of a frange part way along a billet 
(Ro = 1.3) 

when the lower end of the billet is constrained, the de- 
formation field extends very little into the constrained 
region and that a surface of heavy shear occurs almost 
exactly in the plane of the lower flange face in all but one 
specimen. The elevation of the plane of maximum shear 
above the flange lower face in the specimen of largest flange 
thickness reinforces the argument above as to why the 
observed punch pressures do not follow the upward trend 
of the upper bound curve for large flange thicknesses. 
The constraint on the billet is such that an alternative 
mode of deformation requiring a lower punch pressure is 
possible and the flow pattern indicates that the billet is 
tending to deform in region 2 as though p were somewhat 
less than that prescribed by the tool. 

6 FORMABILITY OF THE MATERIALS 
TESTED 

In the annealed state, aluminium generally began to show 
necking at the flange rim when the flange diameter reached 

0 

. P  

Fig. 13. Comparison of results for Ro = 1.6 

twice the billet diameter. If deformation was continued 
fracture proceeded, from a neck, along a surface inclined 
at approximately 45" to each principal axis. The as- 
received aluminium alloy was fairly brittle, but after 
annealing became similar in formability to the aluminium. 
Annealed copper was considerably more ductile and could 
be cold-worked to give flange diameters of three times the 
billet diameter without necking occurring. 

It was generally found that the formability was lower for 
very thin flanges ( p  < 0.2) and that it was slightly lower 
when the flange was formed part way along the billet. It 
was also found that a small radius (0.1 x billet diameter) at 
the lower end of the container bore virtually eliminated 
the scoring of the flange surface which was often prominent 
in specimens formed with unradiused containers. This 
radius had the additional effect of reducing by 5-8 per cent 
the punch pressure required to form a flange of a given 
diameter. The effect was greatest for the thinnest flanges 
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Fig. 14. Flow patterns in aluminium alloy billets injection upset to give different flange thicknesses 

and is attributable to the modification of the flow field in a 
region of particularly high redundant strain rate. 

7 CONCLUSIONS 
While the upper bound solution presented here is an 
improvement on that of Alexander and Lengyel, its 
absolute accuracy for an ideal plastic material remains 
undetermined. It may be noted, however, that replace- 
ment of the conical discontinuity surface by a paraboloid 
produces only marginal reductions in p/uo and these only 
at the smallest values of p. It appears therefore that an 
appreciable improvement in the theory given here (assum- 
ing that it is significantly in error) could be achieved only 
by making u, dependent upon z in the deforming region. 
Experiments using work-hardening materials cannot 
clarify this matter, firstly because the axial thinning of the 
flanges will tend to reduce the forming loads (though not 
greatly) and secondly because of the necessity to introduce 
the arbitrary work-hardening function 4. However, it may 
be argued that since experiment and theory compare 
tolerably well and since the upper bound and the work- 

hardening function are derived from sound principles, the 
theory should give a reasonable guideline for tool strength 
requirements for this process. For reasons described 
above, the stress analysis equation (42) will probably give 
better estimates of punch pressure requirements for up- 
setting thick flanges. Since the results for Elc aluminium 
alloy (as-received) do not differ markedly from the 
results for annealed materials, it seems that the theory 
remains applicable when some initial inhomogeneity of 
yield strength exists within the billet. 

APPENDIX 1 

D E R I V A T I O N  OF THE V E L O C I T Y  FIELD F O R  
R E G I O N  2 OF THE D E F O R M I N G  B I L L E T  

For continuity of flow from region 1 to a right cylindrical 
surface of radius r in region 2, it is required that 

Uar 
2b[Aa +r( 1 -A)] i.e. u, = 
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~ ~-~ 
i.80 1.235 
2.00 I 1.285 
2.20 1.333 
2.40 I 1.379 
2.60 I 1423 

42 1 

~ ~~~ 

1.235 
1.286 
1.334 
1.380 
li424 

From equation ( 1 ) :  

0.759 
0.799 
0.836 
0.870 
0.903 

u cos + = u, cos ++ur sin + 
or 

Since tan + = (b/a)(l - A ) ,  it is found that, from equations 
(43) and (44), on the 1-2 boundary 

U+u, = u, tan + 

i 2 [ ha+t(l-A) 
u 2ha+ar(l -A) u, = -- 

and therefore f ( r )  must be zero. 
Continuity across the 2-3 boundary is automatically 

satisfied in the above solution and so a kinematically 
admissible velocity field for the process has been found. 

0.772 0.786 0.802 
0.810 0.823 0.837 
0-845 0.855 0.866 
0.877 0.884 0.892 
0907 0.912 0.917 

integrating 

”1 +f (4 2b [ [ h a + t ( l - h ) ] ~  
u, 2a2h+ar( 1 - 

u, = -- 

wheref(r) is a function of r only, which is found from the 
conditions for continuity of material across the 1-2 
boundary. In the notation of Fig. 2b t h i s  condition is 
expressed by 

APPENDIX 2 
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